
U.NCLASSI FlED

ADA

ARMED SERVICES TECHNICAL INFORMAMhW AG~M
ARLINGfl)N HALL STATION
ARLINUMt 12, VIEINIA

MOTCN len gaiimmet or other dxwtzW.. sed-
,fleatims or other -datarm used flor my purpose
ohr then In comction with A dAfit.3.y itlamted

overniinnt1 pwcamz pexatioa., th IL -A.
Goemnt thereby incurs no-i miscMility nor aw
oblilption wmatsoeveryma - the fact tbat the (vm-

men mw- ave fbzmdxbed4 fuzn1ds4, or la way w
supplied the said diwix~ps, mppcifimtions, tor ohr
data Is not, to be mgprded bylap1iaation or, other-
vise as in :az mr licensi na the ba3Ar or aW
other, person or corpozatiwi or onwqr±ng yz s
or pOMInSSIo to dxctore, use orW
patented Invention that =W ln =W vW~ rnwla
.therto.

C SLTR 61-114

THE PERCE PTRON AS AN ADAPTIVE
CLAS SiFICATION DEViCE

"~ S T4 A IA,

j(1 j 26 OCTOBER 1961

*no STATES NAAL SE!IPICE LU TO , iUOM, MRALI

? R ~m AV" mom unom Lmu

F "v-or noelease to &SI o

APPrvvalI,- ~. eue..Ps u* . fe D3
to cOnftractors,

3 ,..Approval by %uW " "-o" - r gU
;Ubsiqu4at *relea",

NOLTR 61-114

THE PERCEPTRON AS AN ADAPTIVE CLASSIFICATION DEVICE

Prepared by:

C. Nicholas Pryor, Jr.

ABSTRACT: Many data reduction problems fall under the general
category of classification, such as sonar target classification
or character recognition. These may be represented as a process
of mapping a hyperspace representing the input data into an out-
put space representing distinct decisions or categories. The
majority of practical problems may be simplified by the assump-
tion of continuity in the mapping process, and it is desirable
to mechanize the classification problem according to this
assumption.

A class of adaptive mechanisms known as learning
machines has the capability of classifying input data, and a
machine of this sort can adjust itself to satisfy the desired
classifying criterion If it Is given a collection of input data
identified as to its desired class. One machine of this type is
known as the Perceptron and is discussed in some detail. A
simpler form of the maohine, the half-Perceptron, is also dis-
cussed.

These two types of learning machines were simulated
on the I 704 computer, and sample problems in classification
were processed on them. The results demonstrate some of the
capabilities and limitations of the two machines.

A discussion is also included on the possible future
role of learning machines, and on their application to naval
problems.

PUBLISHED NOVEMBER 1961

U. S. NAVAL ORDNANCE LABORATORY
White Oak, Silver Spring, Maryland

NOLTA 61-.11)4.

NOLTR 61-114 26 October 1961

This report given the results of programing an IBM 704
Computer to act as a PERCEPTRON (a self-adaptive or learning
machine) on two simplified classifioation problems an a
preliminary to a study of submarine classification with sonar
data. The work on this project was supported under
Task No. RUSD-401CO, PUFFS Technical Direction. The report..,.,.
is for the information of other scientists interested in
classification problems or in the use of computers as
adaptive machines.

W. D. COLEMAN

Captain, USN ..

Commander . ..

Z. I. SLAWSKY
By direction

ii . ,.;-,,

NOLTR 61-114

CONTENTS

Page

L. The Classification Problem 1

2. The Perceptron 3

3. The Half-Perceptron 6

4. Computer Simulation of the Perceptron 7

5. Generation of Random Perceptron Connections 11

6. Computer Simulation of the Half-Perceptron 12

7. Experimental Evaluation of the Peroeptron and
Half-Perceptron 13

8. Conclusions 17

9. Appendices

Appendix 1 Perceptron Main Program

Appendix 2 Perceptron Connection Matrix Program

Appendix 3 Half-Perceptron Program

Appendix 4 Data Generation Problem 1

Appendix 5 Data Generation Problem 2

ilil

NOLTR 61-114

ILLUSTRATIONS

Figure 1 Block Diagram of the Perceptron

Figure 2 Block Diagram of the Half-Perceptron

Figure 3 Flow Chart for Perceptron Simulation

Figure 4 Flow Chart for Half-Perceptron Simulation

Figure 5 Half-Perceptron Learning Curve - Problem 1

Figure 6 Perceptron Learning Curve - Problem 1

Figure 7 Distribution of A Unit Values - Problem 1

Figure 5 Half-Perceptron Learning Curve - Problem 2

Figure 9 Perceptron Learning Curve - Problem 2

iv
i iv

NOLTR 61-114

REFERENCES

1. W. Ross Ashby, Design for a Brain, Wiley and Sons,
New York, 1954.

2. John Von Neumann, The Computer and the Brain, Yale University
Press, New Haven, 198.-

3. Frank Rosenblatt, The Perceptron - A Theory of Statistical
Separability in Cogn tive Systems, Cornell Aeronautical
Laboratory, Inc., Report No. VG-1I96-G-I, January 1958.

4. Frank Rosenblatt, The Perceptron: A Probabilistic Model for
Information Storaki-nd Oranizatin in the Brain,'syohologi al Review,-65, 1956, PP. 3n-W.--

5. Frank Rosenblatt, Two Theorems of Statistical Separability
in the Perceptron,IL Report VG-1 V-, September 1958.

6. Frank Rosenblatt, Analysis of Very Large Perceptrons in a
Finite Universe, CAL ProJecT-PR7Teccal Memorandu uNo. 2,
OctoberI-8T

7. Frank Rosenblatt, Perceptron Simulation Experiments (Project
PARA), CAL Report o VG 6-G-3, June 1959.

8. FrJnk Rosenblatt, On the Convergence of Reinforcement Pro-
cedures in Simple I'ei-eeptrons, CAL Report No. VG-l1M--_4,
Febru~ry 19w.

9. Albert E. Murray, A Half-Pereeptron Pattern Filter, CAL
Project PARA TeohnTcal memorandum No.---6, 77-19S0.

10. R. D. Joseph, On Predicting Perceptron Performance, IRE
International nve-ncord, b(art 2).

*11. Frank Rsenblatt i p of Neurodynamics, CAL Report

*This reference contains a review of the entire Peroeptron con-

sept and theoretical performanoe, as well as a very complete
bibliography on the subject.

V

NOLTR 61-114

Tfl PERCEPTRON AS AN ADAPTIVE CLASSIFICATION DEVICE

THE CLASSIFICATION PROBLE4

1.1 In many problems in data reduction such as character
recognition and sonar target classification, a large amount of
data is available (such as light intensity at many points on a
retina or spectral intensity at many frequencies); and the prob-
lem is to identify a given set of input data as belonging to one
of several possible disjoint classes or categories of input sig-
nal, each of which must give rise to a distinct decision or out-
put state of the data reduction system. If there are N pieces
of input data, each with a number of discrete or a range of con-
tinuous values, the input to the system may be represented by a
point in an N-dimensional "input space". Correspondingly if
there are M possible output decisions that may be made (that is,
X possible output classes), we may think of the output as a one-
dimensional space containing M discrete points; and the problem
becomes one of a many-to-one transformation of points from the
input space to the output space. Another way of considering the
problem is that of labeling every point in the input space with
the identification (perhaps a number from 1 to M) of the output
state appropriate to it.

1.2 So far we have assumed that the output state required
for a given point in input space is independent of that required
for any other point, and that it is necessary to examine each
point in detail to determine its required output. This is an
overwhelming job in any reasonable problem and of course impossi-
ble if any one of the input variables is continuous. However,
this is the approach which must be taken if any of the usual
switching circuit or logical computer realisations is to be
attempted.

1.3 In most problems of practical interest it is reasonable
to assume that small changes in one or more of the input variables
will tend not to change the desired output state. That is, near-
by points in the input space will tend to belong to the same
class, and the transformation from input space to output space
will tend to be continuous. The problem now becomes a simpler
one of determining the boundaries separating regions of input
space belonging to different classes. It is no longer necessary
to study every possible input state, but only enough to estimate
these boundaries in the input space. New points (that is points
which were not initially used in establishing the boundaries)
are then oategorised according to the region in which they fall,

1

NOLTR 61-114 i

which means that they are assumed to belong to the same class
as neighboring points. If this decision proves to be wrong, it
is then necessary to adjust the boundaries or perhaps to form a
new region to take the new point into account.

1.4 In spite of this simplification, determining the
proper boundaries from a collection of input data and desired
outputs is still an enormous job (made even more so by the
difficulty of thinking in more than three dimensions) and it
becomes desirable to mechanize this operation. In general this
problem is handled by some sort of adaptive mechanism to which.
a sample of input data is fed, along with information concerning
the desired output. Internally, the machine consists of a large'
logical network, whose logical function may be varied by adjust-
ment of some parameters of the network. Certain types of logi-
cal systems have the desired characteristic of tending to pro-:
duce the same output for similar inputs, and these networks may
be thought of as defining the regions of input space for which
a given output will occur. If the machine output differs from
the desired output, a corrective signal is fed back to the
machine. This performance feedback is designed to adjust the
internal construction of the logical network in such a way as
to correct, or reduce the probability of, the wrong answer.
The effect of this, in a properly designed mechanism, is to
move the boundaries between regions of input space in such a
way that the given input point will be included in the proper
region.

1.5 In an ideally designed machine, only the boundary in
question will be moved; and training for one input point will
not affect the response for other points outside its immediate
vicinity. It is usually not possible to attain this degree of
independence in a practical mechanism, and all boundaries will
tend to move during a given training operation. This reduces
the convergence to the proper configuration to okn iterative
procedure of successive approximations, and it is usually neces-
sary to go through a given finite list of input data a number
of times before error-free operation can be obtained. This
gives the machine a statistical appearance, even though the in-
ternal operation Is usually not randomly determined, and the
size of the machine generally makes anything other than statisti-
cal analysis impractical. For this reason, it is usually suf-
ficient in the training procedure simply to make corrections in
the direction of including the input point in the desired
region rather than necessarily forcing the machine to produce
the desired answer before going on to the next input sample.

1.6 The complexity of the internal logical network of the
adaptive system determines the degree of detail in the appor-
tioning of input space which may be stored in the memory of the

2 S

I

NOLTR 61-114

logical network. Where the input space is divided into many
separate regions with complicated boundaries, a very elaborate
switching circuit would be required to realize the logical
functions implied by these regions. Thus it would be expected
that a rather large adaptive logical network might be required
to simulate this operation. Conversely, certain simple geome-
tries of the regions in input space may be realized using rather
small logical networks. In addition to this, many of the simple
logical systems which may be used in an adaptive learning
machine have fundamental limitations which prevent them from
being able to realize certain geometries within the input space.
These weaknesses generally become apparent upon careful study of
the philosophy used in the machine organization.

1.7 The following sections of this report discuss the
organization of two types of adaptive classification or learning
machines. Their simulation on an IBM 704 computer is also dis-
cussed, and sample problems are shown which demonstrate the
capabilities and characteristics of the machines further.

THE PERCEPTRON

2.1 A device which seems rather well suited for the classi-
fication problem is the Perceptron, developed at the Cornell
Aeronautical Laboratory. The Perceptron was developed as a model
of the possible construction of the human nervous system, and
thus its components may be identified with the receptor neurons,
motor neurons, and intermediate "gray matter" neurons in the
nervous system. The organization of the device is shown in
Figure 1. Inputs to the system are represented by the states of
the Stimulus (8) Units, and through the logical network the
excitations to the Response (R) Units are determined. The binary
state of the several R Units is considered to be the output of
the device.

2.2 Tb logical function is carried out by the intermediate

Association Units, which act as the connections between the
S and R Units. Each A Unit has a number of input connections
(dendrites) which are randomly connected to several of the S
Units. The output of the A Unit is connected at random to an
input of one of the R Units. Of course, no generality is lost
by reordering the A Units so that all those connected to a given
R Unit are located together as shown in Figure 1. Each A Unit
is a two-state device which is either on or off depending on
whether the total excitation to the A Unit (sum of all its in-
puts) exceeds a given threshold level. If the A Unit is on, a
signal proportional to its "Value" is placed on its output
terminal. If it is off, either no signal or minus the "Value"
is placed on the output, depending on the construction of the

~3
* 0

NOLTR 61-114!

particular machine. Each R Unit then becomes either on or off,
depending on whether its input excitation (the sum of the out-
puts of all A Units connected to it) is above or below a fixedthreshold.

2.3 In the nervous system the output of each neuron is a
signal of fixed magnitude, and the triggering level or threshold
of the neuron varies according to some electrochemical process
within the neuron. Learning, or modification of the logical
network within the nervous system, is accomplished by varying' ,-
the triggering level of the individual neurons according to the,
reinforcement given to certain responses and to whether the
neurons were active during the response. In the Perceptron, the
thresholds of the individual A Units are kept fixed, but their
Values are varied according to the reinforcement given the
q*achine. The two methods of learning are roughly equivalent,
but in the Perceptron with its smaller number of components
(roughly 103 A Units against 1010 neurons in the brain) finer °
det&il of learning may be accomplished by varying the Values
and keeping the thresholds fixed.' Of course it is necessary to
adjust the Values during the training operation in some system-
atic way that will tend to converge toward solution of the
problem. A number of procedures for adjusting the A Unit Values
have been studied and their characteristics reported by Cornell
Aeronautical Laboratory.

2.4 Each of the A Units may be thought of as a basic
logical element which performs a boolean operation on its inputs.
In particular this operation is the symmetric function ST N
where there are N inputs to the A Unit and the threshold is T.
The inputs to the A Unit may be restricted to the outputs of the
S Units, or for a more general logic both the S Unit outputs
and their complements may be made available as inputs for the A
Units. The excitation to the R Units is then some linear combi.
nation of the symmetric functions realized by the A Units, and
it is this linear combination that is varied during the learning
process. Finally the greater-than- or less-than decision in the
R Unit produces the last stage of logic. Thus the overall
machine looks like a logical network, although it is really com-
posed of two nonlinear elements separated by a linear operation.
In general the number of possible logical functions which the
machine can realise is limited by the complexity of the logical
system, or by the number of A Units in the Perceptron. Thus the
capability of a Perceptron for discovering and learning complex
input-output relationships is roughly determined by the number
of A Units in the machine, and the performance of a Perceptron
will be improved by increasing the number of A Units.

4

NOLTR 61-i14

2.5 There is, of course, a maximum number of A Units which
may be used without duplication, due to the finite number of
possible combinations of wiring between the S Units and the
A Units. If there are N Stimulus Inputs, then there are N!

ways in which n of them can be connected to an A Unit. If each
of the connections can either be to the direct output of the S
Unit or to its complemented output, then the number of distinct
connections is increased by a factor of 2n . Summing these over-
ill values of n from 0 to N, we obtain 2N possible ways of wiring
A Units if complements of the S Unit outputs are not used and 3N

ways if complements are allowed. However, for each A Unit with
n input connections, there are n possible settings of its thresh-
old which will give distinct logical operation. Thus n different
A Units could be built with the same input connections but
differing in thresholds, which will give different logical out-
puts. It must be noted that a given A Unit with n inputs and a
threshold of k will have a logical output complementary to that
of another A Unit with its n inputs connected to the complements
of the same set of n S Units and with a threshold of n-k. Half
the A Units will then have outputs complementary to the other
half, so there are on logically independenthal, s threareonl '2n n1 (Nln)!'

A Units possible with n inputs from the set of N Stimulus Units.
Summing this over n from 0 to N yields N 3N for the total number

of different A Units which may be built into an N input Perceptron.
The number of wires involved in the connections from the S Units
to the A Units may also be computed since there are n wires to
each A Unit with n inputs. Thus the number of wires in the
- A matrix Is- n2 n N1 or (2N+l). 3 N.

0

2.6 The size of these numbers can best be appreciated by
considering a simple example. In a 10 input machine there would
be 1024 possible A Units if no complements were allowed or
59,O49 A Units if S Unit outputs and their complements were
allowed, asing fixed thresholds in both cases. If all logically
distinct thresholds were allowed in order to produce the most
general machine, there could be as many as 196,830 A Units used
without duplicating or complementing any logical functions. This
machine would require 1,377,810 wires in the connections between
S Units and A Units While these numbers a e still very small
compared to the 2(2k) or approximately 10300 different logical
functions which it in possible to form from the 10 inputs, it is

*5

NOLTR 61-114

fairly obvious that one would not want to build the most general
Perceptron for even ten inputs using present circuit techniques.
Thus it is necessary to build Perceptrons using only a small
percentage of their total possible A Units, generally limiting
the selection to some class (such as a fixed value of n) and
then taking only a random sampling of that class. While some
work has been done on the slope and asymptote of the learning
curves of Perceptrons as a function of the number of A Units,
it is still not clear just what limits are placed on the appor-
tioning-of the input space by a Perceptron with a given number
of A Units.

HALF-PERCEPTRON

3.1 A simpler form of learning machine which is much
smaller than the Perceptron has also been proposed, and it is
termed a half-Perceptron because it is really a degenerate form
of the Perceptron. If a Perceptron is built with exactly N
Association Units connected to each of the R Units, and each of
the A Units is connected simply to one of the S Units, the
machine reduces to the form of Figure 2. In this device there
is clearly only one logical transormation from the input space
(states of the S Units) to the output space (excitations of the
R Units), while in the Perceptron there are two layers of logi-
cal transformation. The first of these may be considered as a
transformation from input space to A Unit excitation space, and
the second as a transformation from A Unit space to the output
space. The additional logical "depth" in the Perceptron allows
it to realize much more complex logical functions than can the
half-Perceptron with a logical depth of only one. It seems
reasonable to expect that a machine similar to the Perceptron
with a logical depth of three or more (obtained by two or more
layers of A Units, with each layer providing the excitation for
the next) would be even more powerful than the Perceptron.

3.2 The half-Perceptron with a single R Unit is a suf-
ficiently simple machine that it is not too difficult to see the
restrictions on the functions that may be realized by it.
Basically the device produces an arbitrary linear combination of

the input excitations and then determines whether this is
greater or less than a fixed threshold. In terms of the parti-
tioning of the input space, the result is that the space will
consist of only two regions or decision classes; and these will
be separated by an arbitrarily placed and oriented N-dimensional
hyperplane. This restricts the types of functions which may be
realized by the half-Perceptron, and the restriction grows more
severe as the number of inputs increases. For example both of
the two functions of no inputs, all of the four functions of one

variable, and 14 of the 16 functions of two variables may be

6

NOLTR 61-114

realized; while only 104 of the 256 functions of three variables
may be realized. In the two-input case such functions as the
logical "or" or "and" may be realized, while the disjunctive
functions testing for agreement or disagreement in sign cannot
be realized.

3.3 In half-Perceptrons with more than one R Unit, the
same restrictions apply to each of the R Units individually.
However, if the several R Unit outputs are taken together in some
logical fashion to represent a single decision (corresponding to
adding a second layer of logic), more complicated regions can be
formed although they will still be bounded by hyperplanes. Thus,
for example, the test for agreement of two or more inputs may be
made as the logical "or" of two R Unit outputs; one of which pro-
duces the "and" of the required inputs and the other of which
produces the "not-or" of the inputs.

COMPUTER SIMULATION OF THE PERCEPTRON

4.1 The IBM 704 computer simulation program for the Per-
ceptron is given in Appendix 1. The program was written in SHARE
symbolic language rather than in FORTRAN in order to provide more
flexibility in coding for decreased running time. Running of the
program is intended to be under control of the BELL Operating
System, and the modified FORTRAN input and output routines
available as part of the BELL system were used for all input and
output routines except for binary tape operations. Because of
BELL system use of sense switches, program stops were necessary
within the main program in order to allow resetting of the sense
switches after leaving and before re-entering BELL system control.

4.2 The number of S Units for the Perceptron was chosen to
be 64, and the number of R Units can be varied from one to six
as determined by the initial parts of the Perceptron program.
The number of A Units was then selected to be as large as possible,
consistent with machine size and operating speed. The most criti-
cal part of the program for speed considerations is the computa-
tion of the A Unit excitations from the S Unit states since this
requires a determination of all the S to A connections for each
input data sample. Because of the large number of connections
this must.be done in the fastest way possible, even at the sacri-
fice of storage space. Repeated computation of these connections
is out of the question, and storage on tape is also too slow to
be practical. Even though the address of the S Unit has only six
significant bits, it is unwieldy to store several addresses in
the same word of core storage because of the computation neces-
sary to select any one of them. Thus the only alternative was
to reserve one word of core storage for each connection between
S and A Units. Approximately 22,000 words were available for

7

NOLTR 61-114

this function, and these were divided among 2760 A Units where
each A Unit would have 8 input connections. Thus the parameters
of the Peroeptron are 64 Stimulus Units, 1 to 6 Response Units,
and 2760 Association Units equally divided among the Response
Units, with each A Unit having 8 connections to S Units.

4.3 The Flow Chart representing the Perceptron operation
is shown in Figure 3. The first operation is an HPR to allow
the sense switches to be set as desired for starting the program.
This is followed by a test of sense switch 4. If this switch
is down, binary tape 7 is read to insert a new set of S to A
obnnections (essentially rewire) in the Perceptron. If the
switch is up, binary tape 8 is read instead, which contains the
last previously used set of S to A connections as well as the
last previous A Unit Values and other Perceptron parameters.
If tape 8 was read, sense switch 3 is tested next. If the
switch is down a card (or a record on tape 0, depending on the
setting of sense switch 5) is read containing 6 parameters
defining the Perceptron operation. PLUS and MINUS control the
steps taken in A Unit Values during the training process and may
be used to modify the training scheme. THOLD is the fixed
threshold level for all the A Units. INDEX4 contains R, the
desired number of Response Units, and INDEX5 contains the number:
2760/R, or the number of A Units connected to each R Unit.
ZROVAL is a control word which is tested in the next step of the
program. If ZROVAL is zero, all the A Unit Values in the
machine are initialized at zero Value or at the Values read in
from tape 8. If ZROVAL is not zero, initial Values are then
read in from cards or tape 0. If sense switch 3 is up, the
machine parameters and A Unit Values are left as they were read
in from tape 8. The machine parameters are then printed out
and the program stops to allow sense switch 5 to be reset or to
allow tape 0 to be changed. The Perceptron is now initialized
and ready to begin reading data.

4.4 The 64 S Unit excitations and the correct R Unit
responses corresponding to one data point are then read in from
a card or a record on tape 9. The first 64 card columns contain
the S Unit inputs, then after two blank spaces columns 67-72
contain the R Unit correct answers. If only R of the six R Units
are used, then the R correct answers should be put in columns
73-R to 72. Although the machine was primarily designed for
binary inputs so the S Unit excitations would be l's or O's, it
is possible to use any number from 0 through 9 for the excita-
tion. Using multi-level data of this sort tends to emphasize
the data points with the highest levels at any sample and ignore
the lower level inputs. This may be desirable for some types of
problems but not for others.

8

NOLTR 61-114

4.5 The next section of the program is the most critical,
in that the computer spends practically all its time executing
one small loop. The five-instruction loop is:

LDQ CONMAT+22080,l
STQ *+1
ADD
TXI 41+1,1,1
TIX *-4,4,1

Before each entry into the loop Index Register 4 is loaded with
an 8 and the accumulator is cleared. The 22080 words of the
CONIAT matrix contain +0400000004xx (or possibly +0402000004xx)
where xx represents a random octal number corresponding to one
of the S Units. The first two instructions in the loop move the
word in COIWAT (under control of Index Register 1) into the next
executable location taking it by way of the MQ. There the word
is interpreted as an ADD (or SUB) instruction so that the con-
tents of the xx S Unit are added to (or subtracted from) the
accumulator. The next instruction increments IR #1, and the
last tests IR #4 and transfers out of the loop after 8 itera-
tions. The contents of the accumulator then equal the excitation
to an A Unit. The threshold is subtracted and the net excitation
is stored in an A Unit memory location. The A Units are counted
by IR #2; and the program loops back, re-initializes IR #4 and
the accumulator, and computes another A Unit excitation until all
2760 A Units have been handled. Thus the 5-instruction loop is
iterated a total of 22080 times, and the remaining five instruc-
tions in the larger loop 2760 times, for each data input sample.
The number of macline cycles for this part of the program is then
2 [5(22080)+5(2760)J or 248,400 cycles. This requires almost 3
seconds of machine time, or considerably more than half the total
5.1 second computing time required for each data input.

4.6 Next the A Unit excitations are tested for sign, and
their state (On if sign was plus, Off if minus) is stored. The
Values of the On A Units are added, and the Values of the Off A
Units are subtracted to compute the excitations to the R Units.
Then the R Unit excitations are tested for sigN, and the R Unit
is put in its "1" state if the sign Is plus and "0" if the excita-
tion is negative. This completes computation of the Perceptron
output decision; it is now necessary to check the decisions
against the correct answers and to train the machine.

4.7 Each R Unit state is compared with the answer supplied
on the data card, and a zero is placed in a checking storage to
indicate a correct answer. If the answer is wrong, a "1" is
stored and sense switch I is tested to determine whether the
machine is to be corrected or not. If switch 1 is up, no adjust-
ment is made to the Peroeptron. If the switch is down, the

9

NOLTR 61-114

A Unit values are to be corrected in such a way as to increase
the probability of a correct answer. The adjusting (or train-
ing) logic is as follows: If the output of an R Unit was zero
when the desired output was a "I", then it is necessary to
increase the excitation to the R Unit. This is done by adding
a fixed step of magnitude PLUS to the Values of all the A Units
which are "on" and which are connected to the given R Unit. A
fixed step equal to MINUS is also added to the Values of the A
Units which are "off" and are connected to the given R Unit.
Thus the Values of the "on" A Units are increased, and the Values
of the "off" A Units are decreased, both of which have the
effect of increasing the excitation to the R Unit. If the R
Unit output is "1" and the desired output is "0", then it is
necessary to decrease the excitation to the R Unit. This is
done by subtracting PLUS from the' Values of the "on" A Units
and subtracting MINUS from the "off" A Units. No changes are
made in A Unit Values if the R Unit output agrees with the
desired response. By adjusting the relative sizes of PLUS and
MINUS, it is possible to achieve different sorts of reinforcement
behavior. Notice that the training here is only in the direction
of correcting the error and takes place in fixed steps. This
differs from the procedure usually used at Cornell where the
correction is made big enough to force the correct response be-
fore the machine goes on to the next data sample. In either
case a number of runs through a given list of data points are
usually necessary before perfect learning occurs, and the choice
as to which of the techniques is preferable depends primarily on
the application for which the Perceptron is intended.

4.8 After the Perceptron has responded to an input data
sample and has been trained as necessary, a single line of out-
put is written summarizing these operations. The first 64 entries
in the line identify the input data point, and the following six
bits correspond to the desired responses as read from the input
card (or tape). The next group of six bits represents the R
Unit states., and the last group of six bits indicates agreement
(a zero) or disagreement (a one) of' the R Unit states and the
desired outputs. A single bit at the end of the line indicates
the state of sense switch 1; being a "1" if the Perceptron was
being trained or "0" if the machine was being tested without
training. This output can be written only on tape 9 if sense
switch 6 is up, or on both tape 9 and the on-line printer if
the switch is down.

4.9 Finally sense switch 2 is tested as a method of ending
the computer run. If switch 2 is up, the computer reads another
input card (or tape record) and repeats its operations on the
next data sample. When switch 2 is put in its down position,
the computer will stop reading input data and transfer to an un-
loading routine. This routine prints out the Values of all the

10

NOLTR 61-114

A Units on the output tape (tape 9) and/or the printer; then it
stores the S to A connection matrix (CONMAT), the A Unit Values,
and the other Peroeptron parameters on binary tape 8 to allow
temporary suspension of running while maintaining stored Values
and other parameters. Notice that the A Units are stored back-
wards in the machine. Thus the A Unit in the lowest machine
address (and whose Value is first in the printout) is connected
to the last R Unit (whose outputs appear in the sixth bit of the
R Unit group in the printout), and its inputs are represented by
the last eight entries in the CONMAT list. Before returning to
the BELL System, the machine stops once more to allow the sense
switches to be returned to their normal positions. Then an
automatic return to BELL System control allows sequencing of the
next Job into the computer.

GENERATION OF RANDOM PERCEPTRON CONNECTIONS

5.1 Since the Perceptron program requires as one of its
inputs a list of the S to A cross-connections (CONMAT), a pro-
gram was written to generate this connection matrix. The
FORTRAN 3 program shown in Appendix 2 generates this list from
a random number subroutine and writes the CONMAT list on binary
tape 7. The connections to each A Unit are independent of those
to other A Units, but the eight inputs to each A Unit are
selected such that no two of them connect to the same S Unit.
The particular random set of connections chosen depends on the
octal number Q which is fed in to start the routine.

5.2 When the octal number INST on the input card repre-
sents ADD 400, the word stored on the binary tape corresponding
to each entry in the CONMAT list is +040000000xx, where the xx
represents the octal number (0 to 77) identifying the S Unit
involved in the connection. The Perceptron program translates
this by adding the output of S Unit xx (octal) to the excitation
of the proper A Unit. This simulates the operation of a
Perceptron using only the uncomplemented outputs of the S Units.
It is possible to modify the CONMAT program slightly to simulate
both the S Unit outputs and their complements by mixing both
ADD and SUB instructions in the CONMAT tape. Thus the words on
the binary tape would be either of the form +0400000004xx or
alternately +040200000xx, the form used for each connection to
be selected systematically or at random.

5.3 A printout list of the connections is also provided
for reference, where a list of eight decimal numbers (0 to 63)
is given for each A Unit, identifying the S Units to which it
is connected. This list is in the same order as the binary
list, and so the first group of eight numbers in the CONMAT

11

NOLTR 61-114

listing corresponds to the last A Unit in the Perceptron pro-
gram. The first eight octal instruction words are also printed

on line as a checking feature on the program.

COMPUTER SIMULATION OP THE HALF-PERCEPTRON

6.1 The half-Perceptron program shown in Appendix 3
is designed to have inputs and outputs compatible with the
Perceptron program. It too has 64 S Units and 6 R Units, but
its logical behavior Is governed by the coefficients stored in
Its 64x6 element S to R matrix.. Because of Its simpler logical
structure, the half-Perceptron runs at the rate of approximately
0.5 second per data sample as opposed to the 5.1 seconds per
sample for the Perceptron. It also becomes practical to print
out the internal structure (MATRIX) of the half-Perceptron
periodically during training.

6.2 Figure 4 shows the flow chart of the half-Perceptron
program. As in the Perceptron, the first Instruction that is
encountered after control is transferred from the BELL system
is a STOP to allow the sense switches to be set for the program.
If sense switch 4 is up, the MATRIX is read in from binary tape 8,
which may contain the MATRIX elements from a preceding run. If
the switch is down, sense switch 3 is then tested to initialize
the MATRIX. If switch 3 is up, all MATRIX elements are assumed
to be zero; if the switch is down, the MATRIX in read into the
machine from the card reader. The half-Perceptron is now
initialized and ready to read input data.

6.3 The input data sample and the desired responses are
then read from a card (if switch 5 is down) or from tape 0 (if
switch 5 is up) in the same format as that used in the Perceptron.
The only significant difference is that the half-Peroeptron
always assumes that six responses are required, and blank spaces
on the ANSWER field of the card wil be interpreted as required
zeros. -The only penalty paid for the assumed six R Units in the
half-Pereptron is a small time loss. In the Pereptron it was
definitely advantageous to divide up the available A Units among
only the required number of R Units.

6.4 The R Unit states are determined by multiplying each
S Unit excitation by the appropriate MATRIX element and determin-
ing whether the net excitation to the R Unit is positive or nega-
tive. The checking and training sections are essentially the
same as those in the Perceptron. Each R Unit state is compared
with the desired response, and the results of the comparison
stored in the CHECK locations. If an R Unit state is wrong,
sense switch 1 Is tested to determine whether the MATRIX elementsshould be adjusted. If the switch i down, the training pro-

12

NoLTR 61-I14

oedure is as follows. If the R Unit state is zero and thedesired response is a "I", then the excitation to the R Unit
should be increased. Thus the MATRIX elements associated with
that R Unit are each increased by the amount of excitation to
the associated S Unit. The reason for this is that S Units which
have zero excitation are not affecting the R Unit excitation,
and there is no justification for increasing the strength of
their connections to the R Unit. If the S Unit excitations are
allowed to range from 0 through 9 (rather than Just being binary
inputs), then the S Units having the largest excitation will have
their connections strengthened the most. There is some justifi-
cation for this, although the training procedure is designed
primarily for binary inputs. If the R Unit state is a "l" where
a "0" is desired, the excitation should be decreased. Thus each
MATRIX element is decreased by the amount of the excitation to
the associated S Unit. If the R Unit state agrees with the
desired response, no change is made in the MATRIX elements.

6.5 The printout after each data sample is processed is
identical to that of the Perceptron, containing the 64 S Unit
excitations, the 6 desired responses, the 6 R Unit states, the
6 checking results, and the single bit indicating whether the
half-Perceptron was being trained or merely tested. Output is
on tape 9, and may also be printed on line by placing sense
switch 6 down. After each data sample is processed and the re-
sults printed, sense switch 2 is tested to determine whether the
next data sample should be read (up) or the running terminated
(down). If the switch is down the MATRIX elements are printed
out on tape 9 (and on line if switch 6 is down), and are also
listed in binary on tape 8 so they can be stored for later re-
smption of running. The program then stops to allow the sense
switches to be reset, and then transfers back to the BELL System.
During the running of the half-Perceptron, the MATRIX is also
printed out on tape 9 (and optionally on line) after each 100
data samples have been processed. After this printout the
machine continues running. The MATRIX list is always used and
printed in the same order, so the first 64 entries in the list
correspond to the connections from the S Units (in ascending
nmerloal order) to the first R Unit.

EXPERIP4ENTAL EVALUATION
OF THE PERCEPTRON AND HALP-PERCEPTRON

7.1 An experimental problem was desired to test the capa-
bilities of the Perceptron and the half-Perceptron. The simplest
logical problem that can be given a classification machine is
to require that each of its outputs be identical to one of its
inputs, and thus independent of all other inputs. This was the
test problem used for the two learning machines, and the states

13

NOLTR 61-114

of the six R Units were required to be identical to the states
of the first six S Units. The FORTRAN program in Appendix 4
generates the input data for the problem. A random list of 64
binary numbers is generated from the random number routine and
used as the S Unit excitation. The first six of these are also
used as the desired responses, and the two groups are written
on tape 6 in the proper format for input to the Perceptron or
half-Perceptron programs. A list of 1000 data samples was pre-
pared in this way.

7.2 A measure of the degree of learning is given by the
number Of errors occurring in a fixed number of data samples.
The errors were counted in groups of ten input samples, and the
number of errors in each group is plotted as a function of the
total number of input samples in Figure 5 for the half-Perceptron
and Figure 6 for the Perceptron. In the half'-Peroeptron case
all 1000 input samples were processed in direct succession. In
the Perceptron the first 237 samples were processed in one run,
then in the second run the first 520 samples were processed.
Thus between input samples 238 and 474 the machine was process-
Ing input data that it had already seen once before, while other
data samples were only being processed for the first time. The
fact that there is no noticeable discontinuity in the learning
curve either at the 237 or the 474 sample points verifies the
fact that the learning process chosen Is only'an incremental
training and that more than one pass through a given set of data
is necessary before it is fully assimilated.

7.3 The learning curves for the half-Perceptron and the
Perceptron are similar in general form, beginning from a point
in the vicinity of the 30 errors (in sixty possible bits) that
would be predicted from purely random operation and decaying
more or less exponentially toward some lower error rate. The
initial slopes for the two machines are roughly the same, al-
though the half-Perceptron reaches a higher degree of learning
much sooner than the Peroeptron. Notice that in the half-Percepton
the error rate gets quite small, and that the machine actually
made no errors at all in the last 100 samples. TSe Perceptron,
on the other hand, only approaches an error rate of about 4
errors per 60 bits and seems to maintain this level of learning.

7.4 The difference in final learning ability of the two
machines is due to the difference in logical organization of the
machines, and to the. special nature of this particular problem.
What is really desired in this problem is that the connections
in the logical network from S Unit X to R Unit X be strengthened,
and that the connections from all the other S Units to that R
Unit be zero or canceled. Because of the organization of the
half-Perceptron, this can actually be done in this machine; and
In fact it can be seen directly from the MATRIX elements. In

l14

NOLTR 61-114

the Perceptron, however, each path from a given S Unit to a
particular R Unit must pass through an A Unit to which other S
Units are connected. Thus, while the values of all A Units which
do not provide transmission paths between the desired S and R
Units can be made zero, it is impossible to eliminate the noise
produced by the other S Unit excitations as they pass through A
Units which do provide transmission paths for the desired S Unit.
This noise can only be reduced by the statistical averaging from
a large number of A Units and goes down as the square root of
the number of A Units. Thus the half-Perceptron can have a zero
error rate for this simple class of problem but the Perceptron
organization limits the machine to some non-zero error rate
determined by the number of A Units in the machine.

7.5 Another significant difference between the two machines
is the difficulty in interpreting the information stored in the
Values of the Perceptron or in the MATRIX of the half-Perceptron.
In the sample problem where six of the 384 connections in the
half-Perceptron were to be strong relative to the others, this
result shows up very clearly in the MATRIX printout. After the
1000 training samples the six desired connections had coefficients
ranging between 31 and 38, while the remaining 378 elements of
the MATRIX had an average value of -0.541 and a standard devia-
tion around this average of 1.43. The negative average value of
the weak connections is due to the tendency for the average of
the MATRIX elements to be zero. In the Perceptron the connec-
tions between the desired S and R Units (and thus the learning)
are distributed throughout the machine. In this problem the
learning can be demonstrated by dividing the A Units belonging
to a given R Unit into two classes; those which connect to the
desired 8 Unit, and those which do not. This was done for the
A Units connected to R Unit #5 and the distributions of the
Values plotted in Figure 7 for each of the two classes. Neither
distribution differs significantly from the normal distribution.
The mean of the Values of those A Units (393) which do not con-
nect to S Unit #5 is -1.8 and the standard deviation of the Values
is 4.7. The mean for the 65 units which did connect to S Unit #5
was 14.3 and the standard deviation was 5.0. The two standard
deviations are not significantly different, but the different
means show that a significant difference has appeared between
the two classes of A Units, indicating that learning has taken
place. _The standarddeviations are also significantly smaller
than 67 or 8.72, which would be predicted by random walk con-
siderations, indicating that the Values are converging toward
some fixed distribution and will not continue to vary indefinite-
ly. In more complicated problems the learning will be even more
deeply embedded in the A Unit Values, and in practical cases it
may be impossible to recognize the various classes of A Units
from the distribution of their Values.

15

NOLTR 61-II1

7.6 The sample problem just discussed is a very simple one,

and is rather easily solved by both the Perceptron and the half-
Perceptron. A second problem was designed in order to demonstrate
the limits of capability of the two machines. In this problem
only two R Units were used, and in the Perceptron the A Units
were divided between these, giving 1380 A Units to each R Unit.
The desired outputs of the machines were defined as follows:
If more of the first five S Units were in the one state than the
number of the next five S Units which were in the one state, the
output of R Unit #5 should be a one. Otherwise (more ones in
the second group of five than in the first group of five, or an,
equal number in each) R Unit #5 should be zero. R Unit #6 was
required to be "1' if the number of ones in the first six S Units
was odd and zero if the number of ones was even. The require-
ment on R Unit #5 is still among the class of problems which may
be solved by a half-Perceptron, and is also within the capabili-
ties of the Peroeptron, where again the Perceptron is likely to
exhibit more random noise in its output because of its organiza-
tion. The required solution for R Unit #6, however, is one of
the most difficult switching functions of six variables; and it
may be shown that it is beyond the theoretical capability of the
half-Perceptron. While a sufficiently large and general Perceptron
can handle this problem, it becomes very difficult for a
Perceptron of the size and limited organization used here.

7.7 A tape was made from the input tape for the previous
problem, substituting new required R Unit responses according to
the above definitions. The FORTRAN 3 program used to produce
this tape is shown in Appendix 5. This tape was processed by
both the half-Perceptron and the Perceptron, and the learning
curves are shown in Figures 8 and 9 respectively. The errors on
each of the two R Units are plotted separately, and the vertical
axis on the plots is the number of errors on the given R Unit in
each group of 20 samples. The upper curve in each Figure repre-
sents the errors in R Unit #5 and the lower is for R Unit #6.
The error rate for R Unit #5 in the half-Perceptron is around 2
or 3 errors per 20 samples. This of course indicates that the
problem is being solved by the machine, although convergence is
not as rapid as in the earlier problem of Figure 5. The errors
per 20 samples in R Unit #6 continue to fluctuate around 10,
which indicates that the machine is merely guessing at random
and that no solution is being formed.

7.8 Only the first 400 samples of the tape were processed
on the Perceptron, and the errors are plotted in Figure 9. Again
the errors in R Unit #5 are decreasing, and the error rate after
400 samples is about 5 per 20 samples and not significantly
different from thi error rate in the half-Perceptron after 400
samples. Also the plot of R Unit #6 errors for the Peroeptron
shows no indication of learning after 400 samples. It is not

16

NOLTR 61-114

clear whether this rate would decrease with a much larger number
of input samples, but for this size Perceptron it is unlikely
that the final error rate after a very large number of samples
would get very much below 10. It should be observed that the
relative number of required zeros to ones for R Unit #5 is ap-
proximately 5 to 3 because of the zero requirement when both
groups of S Units have an equal number of ones. Thus a learning
machine could have an error rate as low as 7.5 per 20 samples
merely by observing this bias and guessing all zeros. However,
there is no evidence from the data that either machine tried
this tactic.

CONC LUS IONS

8.1 The sample problems shown here demonstrate the type
of performance to be expected from learning machines when they
are given simple problems as in the first example, or when they
are given problems requiring or exceeding their full capabili-
ties. The fact that the half-Perceptron reached a lower error
rate on the first example than the Perceptron did, and that the
performance was similar to that of the Perceptron in the second
example, should not be considered an advantage of the half-
Perceptron type of construction. The reason is that the half-
Perceptron in capable of solving only a limited class of prob-
lems, and that its more direct organization allows a lower error
rate for the problems for which it is designed. The majority of
practical classification problems, particularly problems which
require recognizing switching functions, are likely to exceed
the capabilities of the half-Perceptron; and a learning machine
having the flexibility of the Perceptron would be required.

8.2 It in possible that a machine concept could be devel-
ope. having the flexibility of the Perceptron organization, yet
avoiding some of the difficulties inherent in its organization.
However these difficulties tend to disappear as the number of A
Units becomes very large due to averaging out of the random
noise components in the A Units. It Is presently impractical to
consider .a much larger number of A Units in a computer simulation
because of speed and storage limitations, and present electro-
mechanical realizations of A Unit operation are too bulky and
expensive to allow very large Perceptrons. However, it is
reasonable to expect that some sort of solid state device could
be developed having the logical and memory characteristics of an
A Unit. If such a device could be built along the general lines
of multi-hole magnetic cores and/or thin film semi-cgnduotor
circuitry, Perceptrons could be considered having 10 or more
A Units. In such machines very powerful logical behavior and
learning capability would be available for solving various kinds
of classification problems.

17

NOLTR 61-114

8.3 The use of machines such as the Perceptron for naval
problems such as target classification would be restricted to
laboratory studies. It is not practical to use learning machines
as such on board operational vessels because the amount of infor-
mation available (in the form of signals from identifiable tar-
gets) to each vessel would not be sufficient to train such a
machine. Rather the proper use of the learning machines would be
to pool the information available from all sources (tape record-
ings from ships or shore-based installations) and to feed all
this information to a single learning machine for comparative
analysis. In the research phase of target classification studies,
the learning machines could be used to determine which character-
istics of the input data were significant in classifying targets.
In later operational use of such equipment, the laboratory
machine would constantly modify its structure in such a way as
to maintain an optimum classification scheme, based on the
currently available input data. Measurements made on the labora-
tory machine would then provide information for designing, or
perhaps simply readjusting, non-adaptive operational classifiers
for the ships of the fleet.

18

NOLTR 61 -114

~ ASSOCIATION

TRAININ LOGIC

CONETINSREPONSE ~

INUT

NOLTR 61- 114

_
-II

w __ __

824 1

9- I

a-m

MI 'z

z

LLL

LL)L
-J

Svi)

zI-

Ta

NQLTR 61-114

Nd

InI

liq-

NOLTR 61-114

II 4K

4.4

x ~ I.

NOLTR 61 -114

2 0

0 c

z >

w

£rc

o

z -1

a- w
0

in i

,

N a.Nj(
S Z >

__

NOLTR 61 -114

r.

__ 8_ __ -81r
N N -

NOLTR 61 -114

I0-

B)

w

cn

5z-

w

co

w 0w

0 U0

I b-

tro

67

_______v__ _________

NOLTR 61- 114

I-q

L

20-

0 10

I

0
0

OD 0l O0D
-WH SUIOMi2

NOLTR 61 -114

12

R
UNIT
5

eA

0

w NA

12

8-\/

w

R
UNIT

6

0 _ _ __ _

100 200 300 400
NUMBER OF INPUT SAMPLES

FIG,. 9 PERCEPTRON LEARNING CURVE:ERRORS; PER 20 INPUT
SAMPLES, PROBLEM 2

NOLTR 61-114

APPENDIX 1 PERCEPTRON MAIN PROGRAM

-ORG 24
HPR
SWT 4 TEST FOR REBUILD
TRA RETAPE
REM READ NEW CONNECTIONJ MATRIX
LXA INDEX2.1l
RTB 7
CPY CONMAT+2208091
TIX *-l,1,1
TRA NEWVAL
REM READ OLD PARAMETERS AND CONNECTION MATRIX

RETAPE LXA INDEX3#1
RTB 8
CPY VALUE+2484691
TIX *-1,1,1
NOP
SWT 3 TEST FOR RESET VALUES
TRA FIRST
REM READ NEW SYSTEM PARAMETERS

NEWVAL r'SX XINPUT94
NTR F4,,O9
NTR PLUS
NTR MINUS
NTR THOLD,
NTR INDEX4
NTR.INDEX5
NTR ZROVAL
XIT XXXRET
CLA ZROVAL
TZE *+4
TSX XINPUT#4
*NTR F2t9O
MON VALUEttVALUE+2759

FIRST TSX OUTPUT94 PRINT PERCEPTRON CONSTANTS
NTR F49PO
NTR PLUS
NTR MINUS
NTR THQLD
NTR INDEX4
NTR INDEX5
NTR ZROVAL
XIT XXXRET
LXD INDEX5#1
SXD RIGHT-291
SXD RIGHT+lol
HPR
REM READ NEXT STIMULUS AND COMPUTE A INPUTS

STIM TSX XINPUT#4
NTR F3 o O
MON SUNITttANSWER+5
LXD ONEol
LXD INDEX2v2 LOAD 2760

NOLTR 61-114

NEXTA LXD INDEX394 LOAD 8
CLA ZERO

STQ *+1

ADD ADDRESS COMPUTED BY PROGRAM
TXI *+ltl,1 INCREMENT CONNECTION
TIX *-494,l COUNT INNER LOOP
SUB THOLD
STO AUNIT+2760P2
TIX NEXTA#2,9 COUNT A UNITS
REM COMPUTE R UNIT INPUTS AND OUTPUTS
LXD ONE9i
LXD INDEX4P2 LOAD R

NEXTR LXD INDEX5S4 LOAD 2760/R
CLA ZERO

TESTA LDQ AUNIT+2760pl
TQP AON

SUB VALUE+2760#1
LDQ MINUS
STO AUNIT+2760ol
TXI *+tl.l COUNT A UNITS
TIX TESTA41
TRA STORER

AON ADD VALUE+2760#1
LDQ PLUS
STO AUNIT+2760#1
TXI *+lol COUNT A UNITS
TIX TESTA9491

STORER TPL RON
CLA ZERO
TRA *+2

RON CLA ONE
STO RUNIT+692
TIX NEXTR,2ol
REM CHECK ANSWERS AND TRAIN
LXD INDEX491 LOAD R
LXD INDEX5P2 LOAD 2760/R

TESTR CLA RUNIT+69i
SUB ANSWER+61
TZE RIGHT
SWT 1 TEST FOR TRAINING
TRA RIGHT-i
LXD INDEX5#4
TMI INCRE
CLS AUNIT+276092
ADD VALUE+276092
STO VALUE+276092
TXI *+1#29-1
TIX *-4,#41 COUNT A UNITS FOR GIVEN R UNIT

TRA RIGHT-2
INCRE CLA AUNIT+276092

ADD VALUE+2760P2

STO VALUE+2760o2
TXI *+1o2 2-

NOLTR 61-114

TIX *-4,4,l -COUNT A UNITS FOR GIVEN R UNIT
TXI *+12o
CLA ONE

RIGHT STO CHECK+691
TXI *+412,
TIX TESTR#191 COUNT R UNITS
CLA ONE
SWT 1 TEST FOR TRAINING
CLA ZERO
STO TRAIN
TSX OUTPUT94
NTR Fl#PO
MON SUNITotTRAIN
SWT 2 TEST FOR STOP
TRA STIM
TSX OUTPUT#4 PRINT PRESENT VALUES
NTR F2990
MON VALUE.P.VALUE+2759
REM WRITE PARAMETERS AND CONNECTION MATRIX ON TAPE 8
LXA INDEX3#1
WTB 8
CPY VALUE+24846.1
TIX *-1#191
HPR
TSX RETURN94
HTR *-1

ZERO OCT 000000000000
ONE OCT 000001000000
INDEX2 OCT 005310053100 2760 22080
INDEX3 OCT 000010060416 8 24846
Fl BCD 5(lOXo6411,3(3X6.I1)o3XoI1)

OCT 777777777777

F2 BCD 1(1216)
F3 BCD 3(6411ZX96Il)

OCT 777777777777
F4 BCD 1(616)

ORG 256 OCTAL 400
SUNIT BSS 64

ANSWER BSS 6
RUNIT BSS 6
CHECK BSS 6
TRAIN
AUNIT BSS 2760
VALUE BSS 2760
CONMAT BSS 22080
INDEX4 NUMBER OF R UNITS (R)
INDEX5 2760/R
PLUS
MINUS
THOLD
ZROVAL

END 24

3

NOLTR 61-114

APPENDIX 2 PERCEPTRON CONNECTION MATRIX PRtOGRAM

DIMENSION LIST-(S.-2?6O)
READ 20OQ.INST

DO 40 J=192760
DO 40 1u..8

10 CALL NUNUER(Q#R)
IRnR*64*
IF(N)70#40920

20 DO0 30 KmieN
IF(IR-LIST(K#J13G))030

30 CONTINUE
40 LIST(I.J)*IR

PRINT 110#.((LISt(I.J).Iu1.8),Js1.2760)
S LXD N09(11
S WTB 7
S50 CLA LIST.(I)

S ARS 16
S ADD INST
S STO LIST-oil)
S CPY LISTP(I)
S TXI*609-11)91
S60 TXL*50#(Z)922079

S WEF 7
WRITE OUTPUT TAPE 11.120.(LIST(I.1)#Iu1.8)
CALL RETURN

70 STOP
100 FORMAT120l?)
110 FORMATt414X.6I3))

END

NOLTR 61-114

APPENDIX 3 HALF-PERCEPTRON PROGRAM

ORG 100

HPR
fSWT 4 TEST FOR NEW MATRIX

TRA READ8
SWT 3 TEST FOR ZERO MATRIX
TRA STIM-2
TSX XINPUT94.
NTR F39,11
MON MATRIXogMATRIX+383
TRA STIM-2

READ8 LXD INDEX191 384
RTB 8
CPY MATRIX+384#1
TIX *-ltltl
CLA HNDRED
STO COUNT

STIM TSX XINPUT*4
NTR F1,,90

LXD INEX191384
LDINDEX292 6

NEXTR LXINDEX1 64NDOTPT

MMATRIX+384#1
ADRUNIT+692
SORUNIT+6o2

TPL .**2
LDQ ZERO
STO RUNIT+6#2
TIX NEXTR#291
REM CHECK(ANSWERS AND TRAIN
LXD INDEX19i 384
LXD INDEX2#2 6

TESTR CLA RUNIT+6#2
SUB ANSWER+692'
TZE RIGHT
SWT 1 TEST FOR TRAINING
TRA RIGHT-i
LXA INDEX1#4 64
THI INCRE
CLA MATRIX+384#1
SUB SUNIT+64o4
STO MATRIX+384#1
TXI *+1919-1
TIX *-4,4,1
TRA RIGHT-2

INCRE CLA MTI+8#

NOLTR 6 1-114

ADD SUNIT+6'494I

TXI *4.1,1,-i
TIX *-4,4ol
TXI *41,1,64
CLA ONE

RIGHT STO CHECK+6o2
TX! *+1,1,-64
TIX TESTR#291
CLA ONE
SWT 1 TEST FOR TRAINING
CLA ZERO
STO TRAIN
TSX OUTPUT94
NTR F29,0
MON SUNIT99TRAIN
CLA COUNT
SUB ONE
STO COUNT
TZE *+3
SWT 2 TEST FOR STOP
TRA STIM
TSX OUTPUTo4 PRINT PRESENT MATRI-X
NTR F4#90
MON MATRZXtoMATRIX+383
SWT 2IETFRSO
TRA STIM-2TETFRSO
LXD INDEXlol 384
WTS
CPY MATRIX+3842.
TIX *-1,1,1
HPR
TSX RETURN94
HTR *-I,

ZERO OCT 000000000000
ONE OCT 000001000000
HNDRED OCT 000144000000 100
INDEXI OCT 000600000100 384 64
INDEX2 OCT 000006000000 6 0
Fl BCD 3(64I1,2X,611)

OCT 777777777777

OCT 777777777777
F3 BCD 1(816)
F4 BCD 1(1616)
SUNIT BSS 64
ANSWER BSS 6
RUNIT BSS 6
CHECK BSS 6
TRAIN
COUNT
MATRIX BSS 384

END 100

NOLTR 6 1-114

APPENDIX 4 DATA GENERAT'ION PROBLEM 1

DIMENSION KLM(64)
READ 100#Q
DO 20 4.1.91000
DO 10 K1,#64
CALL NUMBER (Q#R)

10 KLM(K)uR*5
20 WRITE OUTPUT TAPE 6,11O,(KLN4(K),K1,o64),(KLM(K),K.1,6)

END FILE 6
100 FORMAT (012)
110 FORMAT (641192X9611)

END

APPENDIX 5 DATA GENERATION PROBLEM 2

DIMENSION Mt(64)oN(6)
DO 10 I114

10 N(I)uO
L02
DO 60 1*1000
READ INPUT TAPE 69.10.M(J)#J.1e64)
IF (M(1)+M(2)+M(3)+M(4)kM(5)-M(6)-M(7)-M(6)-M(9)-t(10))20.20.30

20 N(5)0O
* GO TO 40

30 N(5)61
40 K=M(1)+M(2)+M(3)4M(4)+M(5)+M(6)

S CLA K
S TZE*50
S SUB L
S TZE*50
S SU.B L
s TE5
s SUB L
3 TZE*50

N16)s1
GO TO 60

90, N(6)uO
60 WRITE OUTPUT TAPE 7.10O.4M(J)oJm1.M4),(N(J).Jnm1.6)

END FILE 7
CALL RETURN
STOP

100 FORMAT (641192X*6111
END

NOLTR 61-114

DISTRIBUTION
Copies

Assistant Secretary of Defense
for Research and Development

Information Office Library Branch
Washington 25, D. C.

Chief, Bureau of Naval Weapons
Washington 25, D. C.

(RARE) 1
(R-14) 1
(R-12) 1
(RU-231) 1
(RUDC-1) 1
(DLI-3) 1

Chief, Bureau of Ships
Washington 25, D. C.

Attn: (Technical Library)
Code 631 1

Chief, Office of Naval Research
Washington 25, D. C.
(Code 411) 1
(Code 466) 1

Chief of Naval Operations
Washington 25, D. C.

(Op 311) 1
(Op 312) 1
(Op 316) 1
(Op 93EG) 1
(OP 93R) 1

Commander
U. S. Naval Ordnance Test Station
3202 East Foothill Boulevard
Pasadena, California 1

Commanding Officer
U. S. Naval Underwater Ordnance Station
Newport, Rhode Island

Commanding Officer
U. S. Naval Air Development Center
Johnsville, Pennsylvania 1

I'

NOLTR 61-n14

DISTRIBUTION (CONT.)
Copies

Commanding Officer and Director
U. S. Navy Electronics Laboratory
San Diego 52, California 1

Commanding Officer and Director
U. S. Navy Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut 1

Commanding Officer and Director
David Taylor Model Basin
Washington 7, D. C.

Director
U. S. Navy Underwater Sound Reference Laboratory
Orlando, Florida

Commander
U. S. Naval Ordnance Test Station
China Lake, California 1

Commanding Officer
U. S. Mine Defense Laboratory
Panama City, Florida

Commanding Officer and Director
Naval Research Laboratory
Washington 25, D. C.

(Code 2021) 1
(Code 4000) 1

Director
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

Director
Ordnance Research Laboratory
Pennsylvania State College
UniversLty Park, Pennsylvania

Director
Scripps Institution of Oceanography
University of California
La Jolla, California

NOLTR 61-114

DISTRIBUTION (CONT.)
copies

Director
Applied Physics Laboratory
University of Washington
Seattle 5, Washington

Director
Hudson Laboratory
Columbia University
Dobbs Ferry, New York

Director
Marine Physical Laboratory
San Diego, California

National Research Council
Committee on Undersea Warfare
Executive Secretary
2101 Constitution Avenue, N.W.
Washington, D. C.

Cognitive Systems Group
Cornell Aeronautical Laboratory
Buffalo, New York
Attention: F. Rosenblatt I

Communications and Data Processing Division
Raytheon Company
Norwood, Massachusetts
Attention: J. P. J. Gravell

021 02ir

0 0

4- -P 0 I rdp4 0 r
.. i 0) 0 -4O0

44)HNO 0

'

-,

rl

£4-HG 0liM. r-445. 4n ~-4 H 4)

0 045+ 4) --4 .5

0~ H4 H,- 2 c 0P

I 0r-l 0 . L 0q -H Hd £4 I £ c O . '3)
.H~5022£02,0 -1 d[0 .-. -P0 0. r0,-

*rd H0 m)££4 0 Ca -4)9P4. *H ...- 0
H-P 4)£ P £o-- 4)H~5 A0 £4d24-

+;A0 4)0, rp~ COCO.04 ;3 rd ad l'd0 02

IM0. U3 0 " .jQ. 0 .N02 P-0 .G)P.4

C)H 4)~ +3 '0)H 4)P.)

-H.) - A 02 ,~) , 024 I) 9 P. 0,002
k0 01 rq £ 02 - 2+£4 0 0 -£ 2

Aq 4)00 4)4)40 r- 4)£4
~g 0 1.~ .HH 4)

43 CO £4 0H 4) CH 0 4 ti- - P4r- 00 2

OM 4P 0 ve a 4 02-Hf 2pl, ; 0 .H. 4)0) 02H
64q.-S 4 -9.- H-H4) M~5 £4 go,+ -Or, 4) 0 Il

o 0 H54£-444 rd 4 . 0 -0 s4') s,)P,- 4 I rd E- 4 i r. 0

al* ~£0£4 4 0-' -r £a4 .Ari00 l d0 00q 90 P -0

6 ~£ £40£ p. M- 4) 4))H £ 4

'40 . 0 o £ 4) 4 Tl'1) H - j £4 M 1 - + 025 0 ' 02 H
* 4 ~ W.-0 H 0 go- 0-H m4 r4 -H(£) A 0 4)-H -

00C 0 0 4-.02d202-P42 ~ ~ 02-P 020 P220- 50

-A a rd -H H-1- -A' - H a a a a

o 4 0CH Idc 0 9 - 4 a)0 fH c d4
'd 0 H 9 4. m4- T0 5 4 02 42l05 05 0A' 4-)4 r

.H£ E4P+'P 92 0d kH4. -P)' r ..-N 4 0 04 4 H4
00I 0IH4 0r-5 -lH 04) - 0O ~..40 r v-,-04-

0' *0 H 0 -P2 i
4) 0 k 0 bn54 * 03 kA .4*H- IH04 -

M££iP. .4H)0 H- Q)40. 4)P 4*A--I£ 0 -dOI . 0 . £-3 H
-P)c:H,-.IH rA '0 H C0t+49 *H P HH

H-P) A4H45 1P0 £42- H- E4H- O 4

_4O£-4 H H4H 1-4

*' 0 A a. P4 +. 0 0. FlH£ 0 .HH' -PH .H Od
C.) H 02 e0 -l 4 02 r H c 0-HPdk0 d0 4Qr

rq -P0£4 to.H
0 c *M £4 P , £4 H F, HV r 4) A £4-H- -

H ,0 4Z20. 540 HH£4 ,0 4.Z20.HE4 H O p,.0
,,,; -.H0 - P , .- 0 £0r10 -PP If,-00~0. - P.0 £40- H E-I .1 . 4-

* 40~ -*H H.4) -0 4Wc)0-H 4))9- H H.4- - 4 9.-P

* £4£4P.4C 04, -H- 4 t1 0 02. £4£4 42-P, H) 0) 0-
04£4- a-5 £4 P.- £4 0 ;1 'D £4 H 04

r_ * d d04 H 0C H 2 4P I E4)~~4£ (\I ~~ cd -
10 4 ri 0 P -P E-10 - d-) A' *.-I 4-H £ 4 11 -H

d 0 l .0 +.-4 £4 04P+3 r-i-- 0-P 4£4£P. 2 0
4)4)-.-IA~~r £4 £40£ -1 * O-r 4 £4£

WHOMO 'I H0, -4 r0 HO .0C
I £4 ~ +H 04P-- 05 - i *00- 0 £40 £44'4' 0544)

02C £44 54 '0)2iP.'2 £4)4 ~ H
4, .0 H 0 4)-H 0- £4 0 0 H0 4) -HO-H

0 H 02P2P00-H50 H- 4 0 -I02P.H 0-1 P5H0

